534 research outputs found

    Probing TeV gravity at neutrino telescopes

    Get PDF
    Models with extra dimensions and the fundamental scale at the TeV could imply sign als in large neutrino telescopes due to gravitational scattering of cosmogenic neu trinos in the detection volume. Apart from the production of microscopic black hol es, extensively studied in the literature, we present gravity-mediated interactions at larger distances, that can be calculated in the e ikonal approximation. In these elastic processes the neutrino loses a small fracti on of energy to a hadronic shower and keeps going. The event rate of these events is higher than that of black hole formation and the signal is distinct: no charged leptons and possibly multiple-bang events.Comment: 5 pages; to appear in the proceedings of the Workshop on Exotic Physics with Neutrino Telesocpes, Uppsala 20-22 September 200

    TeV gravity at neutrino telescopes

    Full text link
    Cosmogenic neutrinos reach the Earth with energies around 10^9 GeV, and their interactions with matter will be measured in upcoming experiments (Auger, IceCube). Models with extra dimensions and the fundamental scale at the TeV could imply signals in these experiments. In particular, the production of microscopic black holes by cosmogenic neutrinos has been extensively studied in the literature. Here we make a complete analysis of gravity-mediated interactions at larger distances, where they can be calculated in the eikonal approximation. In these processes a neutrino of energy E_\nu interacts elastically with a parton inside a nucleon, loses a small fraction y of its energy, and starts a hadronic shower of energy y E_\nu << E_\nu. We analyze the ultraviolet dependence and the relevance of graviton emission in these processes, and show that they are negligible. We also study the energy distribution of cosmogenic events in AMANDA and IceCube and the possibility of multiple-bang events. For any neutrino flux, the observation of an enhanced rate of neutral current events above 100 TeV in neutrino telescopes could be explained by TeV-gravity interactions. The values of the fundamental scale of gravity that IceCube could reach are comparable to those to be explored at the LHC.Comment: 10 pages, 7 figures; new section on air showers added, version to be publishe

    Cosmogenic neutrinos and signals of TeV gravity in air showers and neutrino telescopes

    Full text link
    The existence of extra dimensions allows the possibility that the fundamental scale of gravity is at the TeV. If that is the case, gravity could dominate the interactions of ultra-high energy cosmic rays. In particular, the production of microscopic black holes by cosmogenic neutrinos has been estimated in a number of papers. We consider here gravity-mediated interactions at larger distances, where they can be calculated in the eikonal approximation. We show that for the expected flux of cosmogenic neutrinos these elastic processes give a stronger signal than black hole production in neutrino telescopes. Taking the bounds on the higher dimensional Planck mass M_D (D=4+n) from current air shower experiments, for n=2 (6) elastic collisions could produce up to 118 (34) events per year at IceCube. On the other hand, the absence of any signal would imply a bound of M_D>~5 TeV.Comment: 10 pages, 1 figure; version to appear in Phys. Rev. Let

    Origin of the high energy neutrino flux at IceCube

    Full text link
    We discuss the spectrum of the different components in the astrophysical neutrino flux reaching the Earth and the possible contribution of each component to the high-energy IceCube data. We show that the diffuse flux from cosmic ray interactions with gas in our galaxy implies just 2 events among the 54 event sample. We argue that the neutrino flux from cosmic ray interactions in the intergalactic (intracluster) space depends critically on the transport parameter δ\delta describing the energy dependence in the diffusion coefficient of galactic cosmic rays. Our analysis motivates a E^{-2.1} neutrino spectrum with a drop at PeV energies that fits well the data, including the non-observation of the Glashow resonance at 6.3 PeV. We also show that a cosmic ray flux described by an unbroken power law may produce a neutrino flux with interesting spectral features (bumps and breaks) related to changes in the cosmic ray composition.Comment: 19 pages, new section about changes in CR composition, version to appear in Ap

    Propagation in the atmosphere of ultrahigh-energy charmed hadrons

    Full text link
    Charmed mesons may be produced when a primary cosmic ray or the leading hadron in an air shower collide with an atmospheric nucleon. At energies \ge 10^8 GeV their decay length becomes larger than 10 km, which implies that they tend to interact in the air instead of decaying. We study the collisions of long-lived charmed hadrons in the atmosphere. We show that (\Lambda_c,D)-proton diffractive processes and partonic collisions of any q^2 where the charm quark is an spectator have lower inelasticity than (p,\pi)-proton collisions. In particular, we find that a D meson deposits in each interaction just around 55% of the energy deposited by a pion. On the other hand, collisions involving the valence c quark (its annihilation with a sea cbar quark in the target or c-quark exchange in the t channel) may deposit most of D meson energy, but their frequency is low (below 0.1% of inelastic interactions). As a consequence, very energetic charmed hadrons may keep a significant fraction of their initial energy after several hadronic interactions, reaching much deeper in the atmosphere than pions or protons of similar energy.Comment: 13 pages, version to appear in PR

    Peripheral venous blood gases and pulse-oximetry in acute cardiogenic pulmonary oedema

    Get PDF
    Background: The role of venous blood gases as an alternative to arterial blood gases in patients with severe acute heart failure has not been established. Objective: To assess the correlation between arterial and peripheral venous blood gases together with pulse-oximetry (SpO2), as well as to estimate arterial values from venous samples in the first hours upon admission of patients with acute cardiogenic pulmonary oedema. Methods: Simultaneous venous and arterial blood samples were extracted on admission and over the next 1, 2, 3, 4, and 10 hours. SpO2 was also registered at the same intervals. Results: A total of 178 pairs of samples were obtained from 34 consecutive patients with acute cardiogenic pulmonary oedema. Arterial and venous blood gases followed a parallel course in the first hours, showing high correlation rates at all time intervals. Venous samples underestimated pH (mean difference −0.028) and overestimated CO2 (+5.1 mmHg) and bicarbonate (+1 mEq/l). Conversely, SpO2 tended to underestimate SaO2 (mean±SD: 93.1±9.1 vs. 94.2±8.4). Applying simple mathematical formulae based on these differences, arterial values were empirically calculated from venous samples, showing acceptable agreement in the Bland−Altman test. Likewise, a venous pH 51.3 mmHg, and bicarbonate <22.8 mEq/l could fairly identify arterial acidosis, either respiratory or metabolic, with a test accuracy of 92, 68, and 91%, respectively. Conclusions: In patients with cardiogenic pulmonary oedema, arterial blood gas disturbances may be estimated from peripheral venous samples. By monitoring SpO2 simultaneously, arterial punctures could often be avoide

    New physics from ultrahigh energy cosmic rays

    Get PDF
    Cosmic rays from outer space enter the atmosphere with energies of up to 10^{11} GeV. The initial particle or a secondary hadron inside the shower may then interact with an air nucleon to produce nonstandard particles. In this article we study the production of new physics by high energy cosmic rays, focusing on the long-lived gluino of split-SUSY models and a WIMP working as dark matter. We first deduce the total flux of hadron events at any depth in the atmosphere, showing that secondary hadrons can not be neglected. Then we use these results to find the flux of gluinos and WIMPs that reach the ground after being produced inside air showers. We also evaluate the probability of producing these exotic particles in a single proton shower of ultrahigh energy. Finally we discuss the possible signal in current and projected experiments. While the tiny flux of WIMPs does not seem to have any phenomenological consequences, we show that the gluinos could modify substantially the profile of a small fraction of extensive air showers. In particular, they could produce a distinct signal observable at AUGER in showers of large zenith angle.Comment: 9 pages, version to appear in PR

    Atmospheric lepton fluxes at ultrahigh energies

    Full text link
    In order to estimate the possibility to observe exotic physics in a neutrino telescope, it is essential to first understand the flux of atmospheric neutrinos, muons and dimuons. We study the production of these leptons by high-energy cosmic rays. We identify three main sources of muons of energy E > 10^6 GeV: the weak decay of charm and bottom mesons and the electromagnetic decay of unflavored mesons. Contrary to the standard assumption, we find that eta mesons, not the prompt decay of charm hadrons, are the dominant source of atmospheric muons at these energies. We show that, as a consequence, the ratio between the neutrino and muon fluxes is significantly reduced. For dimuons, which may be a background for long-lived staus produced near a neutrino telescope, we find that pairs of E ~ 10^7 GeV forming an angle above 10^-6 rad are produced through D (80%) or B (10%) meson decay and through Drell-Yan proceses (10%). The frequency of all these processes has been evaluated using the jet code PYTHIA.Comment: 10 pages, 4 figures; published versio

    Universal Extra Dimensions and Kaluza Klein Bound States

    Get PDF
    We study the bound states of the Kaluza-Klein (KK) excitations of quarks in certain models of Universal Extra Dimensions. Such bound states may be detected at future lepton colliders in the cross section for the pair production of KK-quarks near threshold. For typical values of model parameters, we find that "KK-quarkonia" have widths in the 10 - 100 MeV range, and production cross sections of order a few picobarns for the lightest resonances. Two body decays of the constituent KK-quarks lead to distinctive experimental signatures. We point out that such KK resonances may be discovered before any of the higher KK modes.Comment: 21 pages LaTeX, 9 eps figure

    Dopamine restores reward prediction errors in old age.

    Get PDF
    Senescence affects the ability to utilize information about the likelihood of rewards for optimal decision-making. Using functional magnetic resonance imaging in humans, we found that healthy older adults had an abnormal signature of expected value, resulting in an incomplete reward prediction error (RPE) signal in the nucleus accumbens, a brain region that receives rich input projections from substantia nigra/ventral tegmental area (SN/VTA) dopaminergic neurons. Structural connectivity between SN/VTA and striatum, measured by diffusion tensor imaging, was tightly coupled to inter-individual differences in the expression of this expected reward value signal. The dopamine precursor levodopa (L-DOPA) increased the task-based learning rate and task performance in some older adults to the level of young adults. This drug effect was linked to restoration of a canonical neural RPE. Our results identify a neurochemical signature underlying abnormal reward processing in older adults and indicate that this can be modulated by L-DOPA
    • …
    corecore